If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9n^2+7n+9=0
a = -9; b = 7; c = +9;
Δ = b2-4ac
Δ = 72-4·(-9)·9
Δ = 373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{373}}{2*-9}=\frac{-7-\sqrt{373}}{-18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{373}}{2*-9}=\frac{-7+\sqrt{373}}{-18} $
| 23x+23=69 | | 10x=11-1 | | (4x-13)^2=0 | | 1. –8x-37–6x=15 | | 37x+6=5(7x+1)+2x+1 | | 3j^2-2j-7=0 | | 15x-5=6×-8 | | 41-x=22 | | -4q^2+q=0 | | 4(x-1)=25+x/20 | | 2(a–1)=3(a+1) | | -2g^2+2g+8=0 | | x+6=25+x/20 | | 7x-(x-3)-5=10 | | x+6=25+x/2 | | 10-5x=-4x | | 4(t–2)=12 | | -2h^2+4h+9=0 | | x+-3*3=3-42 | | 29x-47=21x+13 | | 6x+2=6x+48 | | 4v^2+8v+4=0 | | -9u^2+6u=0 | | 6(x)=2x^2 | | X/3+x+7=10 | | 23/45=16b | | -9y^2+1=0 | | 2s^2-4s-6=0 | | 0.11y+0.04(y+5000)=1250 | | -3.8t=4=4.4t-37 | | 6p^2-9p-6=0 | | 8n/13-5n/13=24000 |